Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.082
Filtrar
1.
Environ Geochem Health ; 46(5): 162, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592579

RESUMEN

Convenient transportation facilities not only bring the higher standard of living to big cities, but also bring some environmental pollution problems. In order to understand the presence and sources of methylated polycyclic aromatic hydrocarbons (Me-PAHs) in environmental samples and their association with total organic carbon (TOC), 49 Me-PAHs were analyzed in road dust, green belt soil and parking lot dust samples in Harbin. The results showed that the ranges of the total Me-PAHs (ΣMe-PAHs) content in road dust were 221-5826 ng/g in autumn and 697-7302 ng/g in spring, and those in green belt soil were 170-2509 ng/g and 155-9215 ng/g in autumn and spring, respectively. And ΣMe-PAHs content in parking lot dust ranged from 269 to 2515 ng/g in surface parking lots and from 778 to 10,052 ng/g in underground parking lots. In these samples, the composition profile of Me-PAHs was dominated by 4-ring Me-PAHs. The results of diagnostic ratios and principal component analysis (PCA) indicated that petrogenic and pyrogenic sources were the main sources of Me-PAHs in the samples. Spearman correlation analysis showed that there was no correlation for Me-PAHs in road dust and green belt soil on the same road. Furthermore, there was a significant positive relationship (0.12 ≤ R2 ≤ 0.67, P < 0.05) between Me-PAHs concentrations and the TOC content. This study demonstrated the presence of Me-PAHs with high concentrations in the road environment samples of Harbin.


Asunto(s)
Polvo , Hidrocarburos Policíclicos Aromáticos , Ciudades , Contaminación Ambiental , Suelo
2.
J Environ Manage ; 357: 120610, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581889

RESUMEN

Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.


Asunto(s)
Restauración y Remediación Ambiental , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Contaminantes del Suelo/análisis , Carbón Orgánico , Suelo
3.
Sci Total Environ ; 926: 172087, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38561129

RESUMEN

The main components of particulate matter (PM) had been reported to change DNA methylation levels. However, the mixed effect of PM and its constituents on DNA methylation and the underlying mechanism in children has not been well characterized. To investigate the association between single or mixture exposures and global DNA methylation or DNA methyltransferases (DNMTs), 273 children were recruited (110 in low-exposed area and 163 in high-exposed area) in China. Serum benzo[a]pyridin-7,8-dihydroglycol-9, 10-epoxide (BPDE)-albumin adduct and urinary metals were determined as exposure markers. The global DNA methylation (% 5mC) and the mRNA expression of DNMT1, and DNMT3A were measured. The linear regression, quantile-based g-computation (QGC), and mediation analyses were performed to investigate the effects of individual and mixture exposure. We found that significantly lower levels of % 5mC (P < 0.001) and the mRNA expression of DNMT3A in high-PM exposed group (P = 0.031). After adjustment for age, gender, BMI z-score, detecting status of urinary cotinine, serum folate, and white blood cells, urinary arsenic (As) was negatively correlated with the % 5mC. One IQR increase in urinary As (19.97 µmol/mol creatinine) was associated with a 11.06 % decrease in % 5mC (P = 0.026). Serum BPDE-albumin adduct and urinary cadmium (Cd) were negatively correlated with the levels of DNMT1 and DNMT3A (P < 0.05). Mixture exposure was negatively associated with expression of DNMT3A in QGC analysis (ß: -0.19, P < 0.001). Mixture exposure was significantly associated with decreased % 5mC in the children with non-detected cotinine or normal serum folate (P < 0.05), which the most contributors were PAHs and As. The mediated effect of hypomethylation through DNMT1 or DNMT3A pathway was not observed. Our findings indicated that individual and mixture exposure PAHs and metal components had negative associations with global DNA methylation and decreased DNMT3A expression significantly in school-age individuals.


Asunto(s)
Metilación de ADN , Hidrocarburos Policíclicos Aromáticos , Niño , Humanos , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , Cotinina , Material Particulado , Polvo , ADN , Albúminas/metabolismo , Estudiantes , Ácido Fólico , ARN Mensajero/metabolismo
4.
J Colloid Interface Sci ; 665: 934-943, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38569310

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are excellent alternative luminophores for electrochemiluminescence (ECL) immunoassays. However, they are inevitably limited by the aggregation-caused quenching effect. In this study, aimed at eliminating the aggregation quenching of PAHs, luminescent metal-organic frameworks (MOFs) with 1,3,6,8-tetra(4-carboxybenzene)pyrene (H4TBAPy) as the ligand were exploited as a novel nano-emitter for the construction of ECL immunoassays. The luminophore exhibits efficient aggregation-induced emission enhancement, good acid-base resistance property and unusual ECL reactivity. In addition, the simultaneous use of potassium persulfate and hydrogen peroxide as dual co-reactants resulted in a synergistic enhancement of the cathodic ECL efficiency. The use of magnetic iron-nickel alloys as the multifunctional sensing platform can further enhance the ECL activity, and its enriched zero-valent iron as a co-reactant accelerator effectively drives ECL analytical performance. Profiting from the excellent characteristics, signal-on ECL immunoassays have been constructed. With carcinoembryonic antigen as the model analysis target, a detection limit of 0.63 pg/mL was obtained within the linear range of 1 pg/mL to 50 ng/mL, accompanied by excellent analytical performance. This report opens a new window for the rational design of efficient ECL illuminators, and the proposed ECL immunoassays may find promising applications in the detection of disease markers.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Hidrocarburos Policíclicos Aromáticos , Pirenos , Inmunoensayo , Hierro , Mediciones Luminiscentes , Técnicas Electroquímicas , Límite de Detección
5.
Environ Monit Assess ; 196(5): 415, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568381

RESUMEN

In this study, we used a comprehensive array of sampling techniques to examine the pollution caused by organic micropollutants in Izmit Bay for the first time. Our methodology contains spot seawater sampling, semi-permeable membrane devices (SPMDs) passive samplers for time-weighted average (TWA), and sediment sampling for long-term pollution detection in Izmit Bay, together. Additionally, the analysis results obtained with these three sampling methods were compared in this study. Over the course of two seasons in 2020 and 2021, we deployed SPMDs for 21 days in the first season and for 30 days in the second season. This innovative approach allowed us to gather sea water samples and analyze them for the presence of polycyclic aromatic hydrocarbons (Σ15 PAHs), polychlorinated biphenyls (Σ7 PCBs), and organochlorine pesticides (Σ11 OCPs). Using SPMD-based passive sampling, we measured micropollutant concentrations: PAHs ranged from 1963 to 10342 pg/L in 2020 and 1338 to 6373 pg/L in 2021; PCBs from 17.46 to 61.90 pg/L in 2020 and 8.37 to 78.10 pg/L in 2021; and OCPs from 269.2 to 8868 pg/L in 2020 and 141.7 to 1662 pg/L in 2021. Our findings revealed parallels between the concentrations of PAHs, PCBs, and OCPs in both SPMDs and sediment samples, providing insights into the distribution patterns of these pollutants in the marine ecosystem. However, it is worth noting that due to limited data acquisition, the suitability of spot sampling in comparison to instantaneous sampling remains inconclusive, highlighting the need for further investigation and data collection.


Asunto(s)
Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Bahías , Ecosistema , Monitoreo del Ambiente , Contaminación Ambiental
6.
Fungal Biol ; 128(2): 1675-1683, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575240

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, causing increasing concern because of their impact on soil health, food safety and potential health risks. Four bioremediation strategies were examined to assess the dissipation of PAHs in agricultural soil amended with sewage sludge over a period of 120 days: soil-sludge natural attenuation (SS); phytoremediation using maize (Zea mays L.) (PSS); mycoremediation (MR) separately using three white-rot fungi (Pleurotus ostreatus, Phanerochaete chrysosporium and Irpex lacteus); and plant-assisted mycoremediation (PMR) using a combination of maize and fungi. In the time frame of the experiment, mycoremediation using P. chrysosporium (MR-PH) exhibited a significantly higher (P < 0.05) degradation of total PAHs compared to the SS and PSS treatments, achieving a degradation rate of 52 %. Both the SS and PSS treatments demonstrated a lower degradation rate of total PAHs, with removal rates of 18 % and 32 %, respectively. The PMR treatments showed the highest removal rates of total PAHs at the end of the study, with degradation rates of 48-60 %. In the shoots of maize, only low- and medium-molecular-weight PAHs were found in both the PSS and PMR treatments. The calculated translocation and bioconversion factors always showed values < 1. The analysed enzymatic activities were higher in the PMR treatments compared to other treatments, which can be positively related to the higher degradation of PAHs in the soil.


Asunto(s)
Pleurotus , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Suelo , Aguas del Alcantarillado , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Pleurotus/metabolismo , Zea mays
7.
Environ Geochem Health ; 46(5): 146, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578375

RESUMEN

With the transformation and upgrading of industries, the environmental problems caused by industrial residual contaminated sites are becoming increasingly prominent. Based on actual investigation cases, this study analyzed the soil pollution status of a remaining sites of the copper and zinc rolling industry, and found that the pollutants exceeding the screening values included Cu, Ni, Zn, Pb, total petroleum hydrocarbons and 6 polycyclic aromatic hydrocarbon monomers. Based on traditional analysis methods such as the correlation coefficient and spatial distribution, combined with machine learning methods such as SOM + K-means, it is inferred that the heavy metal Zn/Pb may be mainly related to the production history of zinc rolling. Cu/Ni may be mainly originated from the production history of copper rolling. PAHs are mainly due to the incomplete combustion of fossil fuels in the melting equipment. TPH pollution is speculated to be related to oil leakage during the industrial use period and later period of vehicle parking. The results showed that traditional analysis methods can quickly identify the correlation between site pollutants, while SOM + K-means machine learning methods can further effectively extract complex hidden relationships in data and achieve in-depth mining of site monitoring data.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Cobre/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Zinc/análisis , Contaminación Ambiental/análisis , Suelo , Contaminantes Ambientales/análisis , Minería de Datos , Monitoreo del Ambiente/métodos , China , Medición de Riesgo
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612589

RESUMEN

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Asunto(s)
Ácidos Grasos Omega-3 , Hidrocarburos Policíclicos Aromáticos , Humanos , Adulto , Ratones , Animales , Ácidos Grasos Omega-3/farmacología , Aductos de ADN , Carcinogénesis , Transformación Celular Neoplásica , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología
9.
Environ Microbiol Rep ; 16(2): e13197, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600035

RESUMEN

Many microbial genes involved in degrading recalcitrant environmental contaminants such as polycyclic aromatic hydrocarbons (PAHs) have been identified and characterized. However, all molecular mechanisms required for PAH utilization have not yet been elucidated. In this work, we demonstrate the proposed involvement of lasso peptides in the utilization of the PAH phenanthrene in Sphingomonas BPH. Transpositional mutagenesis of Sphingomonas BPH with the miniTn5 transposon yielded 3 phenanthrene utilization deficient mutants, #257, #1778, and #1782. In mutant #1782, Tn5 had inserted into the large subunit of the naph/bph dioxygenase gene. In mutant #1778, Tn5 had inserted into the B2 protease gene of a lasso peptide cluster. This finding is the first report on the role of lasso peptides in PAH utilization. Our studies also demonstrate that interruption of the lasso peptide cluster resulted in a significant increase in the amount of biosurfactant produced in the presence of glucose when compared to the wild-type strain. Collectively, these results suggest that the mechanisms Sphingomonas BPH utilizes to degrade phenanthrene are far more complex than previously understood and that the #1778 mutant may be a good candidate for bioremediation when glucose is applied as an amendment due to its higher biosurfactant production.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Biodegradación Ambiental , Fenantrenos/metabolismo , Péptidos/genética , Glucosa
10.
Sci Total Environ ; 927: 172380, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604358

RESUMEN

The presence of nanoplastics (NPs) and microplastics (MPs) in the environment is recognised as a global-scale problem. Due to their hydrophobic nature and large specific surface, NPs and MPs can adsorb other contaminants, as polycyclic aromatic hydrocarbons (PAHs), and modulate their bioavailability and hazard. Adult zebrafish were exposed for 3 and 21 days to: (1) 0.07 mg/L NPs (50 nm), (2) 0.05 mg/L MPs (4.5 µm), (3) MPs with sorbed oil compounds of the water accommodated fraction (WAF) of a naphthenic crude oil (MPs-WAF), (4) MPs with sorbed benzo(a)pyrene (MPs-B(a)P), (5) 5 % WAF and (6) 21 µg/L B(a)P. Electrodense particles resembling NPs were seen in the intestine lumen close to microvilli. MPs were abundantly found in the intestine lumen, but not internalised into the tissues. After 21 days, NPs caused a significant downregulation of cat, and upregulation of gpx1a and sod1, while MPs upregulated cyp1a and increased the prevalence of liver vacuolisation. No histopathological alteration was observed in gills. In this study, contaminated MPs did not increase PAH levels in zebrafish but results highlight the potential differential impact of plastic particles depending on their size, making it necessary to urgently address the ecotoxicological impact of real environmental NPs and MPs.


Asunto(s)
Microplásticos , Hidrocarburos Policíclicos Aromáticos , Poliestirenos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Poliestirenos/toxicidad , Nanopartículas/toxicidad
11.
J Hazard Mater ; 470: 134160, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574665

RESUMEN

OBJECTIVE: To investigate the effects of polycyclic aromatic hydrocarbons(PAHs) on puberty in boys. METHODS: 695 subjects were selected from four primary schools in Chongqing, China. 675 urine samples from these boys were collected four PAH metabolites: 1-hydroxypyrene, 2-hydroxynaphthoic, 2-hydroxyfluorene, and 9-hydroxyphenanthrene. Pubertal development of 695 boys was assessed at follow-up visits starting in December 2015 and occurring every six months thereafter until now, data used in this article ending in June 2021. A total of 12 follow-up visits were performed. Cox proportional hazards regression models were used to analyze the relationship between PAH metabolite concentrations and indicators of pubertal timing. RESULTS: The mean age at puberty onset of testicular volume, facial hair, pubic hair, first ejaculation, and axillary hair in boys was 11.66, 12.43, 12.51, 12.72 and 13.70 years, respectively. Cox proportional hazards regression models showed that boys with moderate level of 1-OHPyr exposure was associated with earlier testicular development (hazard ratio [HR] = 1.276, 95% confidence interval [CI]: 1.006-1.619), with moderate level of 2-OHNap were at higher risk of early testicular development (HR = 1.273, 95% CI: 1.002-1.617) and early axillary hair development (HR = 1.355, 95% CI: 1.040-1.764), with moderate level of 2-OHFlu was associated with earlier pubic hair development (HR = 1.256, 95% CI: 1.001-1.577), with high level of 9-OHPhe were at higher risk of early fisrt ejaculation (HR = 1.333, 95% CI: 1.005-1.767) and early facial hair development (HR = 1.393, 95% CI: 1.059-1.831). CONCLUSION: Prepubertal exposure to PAHs may be associated with earlier pubertal development in boys.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Pubertad , Humanos , Masculino , Hidrocarburos Policíclicos Aromáticos/orina , Hidrocarburos Policíclicos Aromáticos/toxicidad , Niño , Adolescente , Pubertad/efectos de los fármacos , Estudios Longitudinales , China , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/orina , Maduración Sexual/efectos de los fármacos , Testículo/efectos de los fármacos , Modelos de Riesgos Proporcionales
12.
J Hazard Mater ; 470: 134199, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593660

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants and need to be measured reliably in waters and other media, to understand their sources, fate, behaviour and to meet regulatory monitoring requirements. Conventional water sampling requires large water volumes, time-consuming pre-concentration and clean-up and is prone to analyte loss or contamination. Here, for the first time, we developed and validated a novel diffusive gradients in thin-films (DGT) passive sampler for PAHs. Based on the well-known DGT principles, the sampler pre-concentrates PAHs with typical deployment times of days/weeks, with minimal sample handling. For the first time, DGT holding devices made of metal and suitable for sampling hydrophobic organic compounds were designed and tested. They minimize sorption and sampling lag times. Following tests on different binding layer resins, a MIP-DGT was preferred - the first time applying MIP for PAHs. It samples PAHs independent of pH (3.9 -8.1), ionic strength (0.01 -0.5 M) and dissolved organic matter < 20 mg L-1, making it suitable for applications across a wide range of environments. Field trials in river water and wastewater demonstrated that DGT is a convenient and reliable tool for monitoring labile PAHs, readily achieving quantitative detection of environmental levels (sub-ng and ng/L range) when coupled with conventional GC-MS or HPLC. ENVIRONMENTAL IMPLICATIONS: PAHs are carcinogenic and genotoxic compounds. They are environmentally ubiquitous and must be monitored in waters and other media. This study successfully developed a new DGT passive sampler for reliable in situ time-integrated measurements of PAHs in waters at the ng/L level. This is the first time to use passive samplers for accurate measurements of hydrophobic organic contaminants in aquatic systems without calibration, a big step forward in monitoring PAHs. The application of this new sampler will enhance our understanding of the sources, fate, behavior and ecotoxicology of PAHs, enabling improved environmental risk assessment and management of these compounds.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Difusión
13.
J Hazard Mater ; 470: 134200, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593661

RESUMEN

Non-ferrous metal smelting emits large amounts of organic compounds into the atmosphere. Herein, 20 parent polycyclic aromatic hydrocarbons (PPAHs), 9 nitrated PAHs (NPAHs), 14 chlorinated PAHs (ClPAHs), and 6 alkylated PAHs (APAHs) in atmospheric samples from a typical non-ferrous metal smelting plant (NMSP) and residential areas were detected. In NMSP, benzo[a]pyrene, dibenz[a,h]anthracene, 6-nitrochrysene, 9-chlorofluorene, and 1-methylfluorene were the predominant compounds in the particulate phase, while phenanthrene constituted 57.3% in the gaseous phase. The concentration of PAHs in residential areas around NMSP was 1.8 times higher than that in the control area. Additionally, there was a significant negative correlation between the concentration and the distance from the NMSP. In terms of health risks, although the skin penetration coefficient of PM2.5 is smaller than that of the gaseous phase, dermal absorption of PM2.5 posed a greater threat to the population, the incremental lifetime cancer risk (ILCR) of NMSP was 1.8 × 10-4. After considering bioavailability, BILCR decreased by 1-2 orders of magnitude in different regions, and dermal absorption decreased more than inhalation intake. Nevertheless, the dermal absorption of PM2.5 in NMSP still presents a probable carcinogenic risk. This study provides a necessary reference for the subsequent control of NMSP contamination.


Asunto(s)
Contaminantes Atmosféricos , Disponibilidad Biológica , Metalurgia , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Atmosféricos/análisis , Humanos , Medición de Riesgo , Material Particulado/análisis , Monitoreo del Ambiente
14.
Environ Int ; 186: 108616, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593687

RESUMEN

The associations of polycyclic aromatic hydrocarbons (PAHs) with cardiovascular diseases (CVDs) and all-cause mortality are unclear, especially the joint effects of PAHs exposure. Meanwhile, no studies have examined the effect of phenotypic ageing on the relationship between PAHs and mortality. Therefore, this study aimed to investigate the independent and joint associations between PAHs and CVDs, all-cause mortality, and assess whether phenotypic age acceleration (PhenoAgeAccel) mediate this relationship. We retrospectively collected data of 11,983 adults from the National Health and Nutrition Examination Survey database. Firstly, Cox proportional hazards regression and restricted cubic splines were applied to evaluate the independent association of single PAH on mortality. Further, time-dependent Probit extension of Bayesian Kernel Machine Regression and quantile-based g-computation models were conducted to test the joint effect of PAHs on mortality. Then, difference method was used to calculate the mediation proportion of PhenoAgeAccel in the association between PAHs and mortality. Our results revealed that joint exposure to PAHs showed positive association with CVDs and all-cause mortality. By controlling potential confounders, 1-Hydroxynapthalene (1-NAP) (HR = 1.24, P = 0.035) and 2-Hydroxyfluorene (2-FLU) (HR = 1.25, P < 0.001) showed positive association with CVDs mortality, and they were the top 2 predictors (weight: 0.82 for 1-NAP, 0.14 for 2-FLU) of CVDs mortality. 1-NAP (HR = 1.15, P < 0.001) and 2-FLU (HR = 1.13, P < 0.001) also showed positive association with all-cause mortality, and they were also the top 2 predictors of all-cause mortality (weight: 0.66 for 1-NAP, 0.34 for 2-FLU). PhenoAgeAccel mediated the relationship between 1-NAP, 2-FLU and CVDs, all-cause mortality, with a mediation proportion of 10.00 % to 24.90 % (P < 0.05). Specifically, the components of PhenoAgeAccel including C-reactive protein, lymphocyte percent, white blood cell count, red cell distribution width, and mean cell volume were the main contributors of mediation effects. Our study highlights the hazards of joint exposure of PAHs and the importance of phenotypic ageing on the relationship between PAHs and mortality.


Asunto(s)
Enfermedades Cardiovasculares , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Enfermedades Cardiovasculares/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Adulto , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Fenotipo , Envejecimiento , Estudios Retrospectivos , Encuestas Nutricionales , Anciano , Modelos de Riesgos Proporcionales
15.
Sci Rep ; 14(1): 8318, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594356

RESUMEN

The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Niño , Humanos , China , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Hungría , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Ríos/química , Agua , Contaminantes Químicos del Agua/análisis , Adulto
16.
Huan Jing Ke Xue ; 45(5): 2558-2570, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629521

RESUMEN

Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are a global problem that influences the environment and threatens human health. To investigate the characteristics, sources, and health risk assessment of PM2.5-bound PAHs and their derivatives, PM2.5 were collected at an urban site in Zibo from November 5 to December 26, 2020, and the concentrations of 16 conventional PAHs, nine NPAHs, and five OPAHs in PM2.5 were analyzed using gas chromatography-mass spectrometry. Source apportionment of PAHs and their derivatives was conducted using diagnostic ratios and a PMF model, and the health risks of PAHs and their derivatives to adult men and women were evaluated using the source-dependent incremental lifetime cancer risk (ILCR) model. The results showed that the average concentrations of ∑16pPAHs, ∑9NPAHs, and ∑5OPAHs in PM2.5 of Zibo City during the sampling period were (41.61 ± 13.40), (6.38 ± 5.70), and (53.20 ± 53.47) ng·m-3, respectively. The concentrations of the three PAHs increased significantly after heating, which were 1.31, 2.04, and 5.24 times larger than those before heating. During the sampling period, Chr, BaP, and BaA were the dominant components of pPAHs; 9N-Ant and 2N-Flt + 3N-Flt were the dominant components of NPAHs; and ATQ and BZO were the dominant components of OPAHs. Source apportionment results showed that motor vehicles were the main source of PAHs and their derivatives in PM2.5 before heating, whereas after heating, the main sources were the mixed source of coal and biomass combustion and secondary formation. The total BaP equivalent (TEQ) was 14.5 ng·m-3 during the sampling period, and the TEQ increased significantly after heating, which was approximately 1.2 times of that before heating. Assisted by the individual PAH source apportionment results, the ILCR of PM2.5-boundPAHs and NPAHs in Zibo City had a certain potential carcinogenic risk for adult males (1.06 × 10-5) and females (9.32 × 10-6). Among them, the health risks of PAHs from gasoline vehicles, diesel vehicles, and coal/biomass combustion were significantly higher than those from other emission sources.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Adulto , Femenino , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Calefacción , Monitoreo del Ambiente/métodos , Medición de Riesgo , Carbón Mineral/análisis , China
17.
J Environ Sci (China) ; 142: 155-168, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527881

RESUMEN

We conducted a simultaneous field study of PM2.5-bound particulate polycyclic aromatic hydrocarbons (PAHs) and aromatic acids (AAs) in a polluted city Zhengzhou to explore the concentration, sources and potential conversion pathways between PAHs and AAs in different seasons. The average concentrations of PM2.5, 28PAHs and 8AAs during the sampling period were 77 µg/m3, 75 ng/m3, and 283 ng/m3, respectively. The concentration of both 28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3, respectively. PAHs with 5-7 rings were the main components of PAHs (52%), followed by 4 rings PAHs (30%) and 2-3 rings PAHs (18%). According to the source appointment results obtained by positive matrix factorization, the main sources of PAHs were combustion and vehicle emissions, which account for 37% and 34%, respectively. 8AAs were divided into three groups, including four benzene dicarboxylic acids (B2CAs), three benzene tricarboxylic acids (B3CAs) and one benzene tetracarboxylic acid (B4CA). And interspecies correlation analysis with PM2.5 source markers were used to investigate potential sources. Phthalic acid (o-Ph) was the most abundant specie of 8AAs (157 ng/m3, 55% of 8AAs), which was well correlated with sulfate. Meanwhile, B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan, suggesting that secondary formation was their main source. As logical oxidation products of PAHs, o-Ph and B3CAs showed good correlations with a number of PAHs, indicating possible photochemical oxidation pathway by PAHs. In addition, O3, NO2, temperature and relative humidity have positive effects on the secondary formation of B3CAs.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Benceno , Monitoreo del Ambiente/métodos , China , Emisiones de Vehículos/análisis , Estaciones del Año , Polvo/análisis , Carbón Mineral/análisis , Sulfatos/análisis
18.
J Appl Biomed ; 22(1): 12-22, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505966

RESUMEN

BACKGROUND AND OBJECTIVES: It has long been known that airborne polycyclic aromatic hydrocarbons (PAHs) can negatively affect pregnancy and birth outcomes, such as birth weight, fetal development, and placental growth factors. However, similar studies yield divergent results. Our goal was to estimate the amount of monohydroxylated PAH (OH-PAH) metabolites in the urine of pregnant women/mothers and their newborns in relation to birth outcomes, such as placenta weight, Apgar 5', and the growth parameters of children up to the age of two. METHODS: Two cohorts of children born in 2013 and 2014 during the summer and winter seasons in the Czech Republic in the cities Karviná (N = 144) and Ceské Budejovice (N = 198), which differ significantly in the level of air pollution, were studied. PAH exposure was assessed by the concentration of benzo[a]pyrene (B[a]P) in the air and the concentration of 11 OH-PAH metabolites in the urine of newborns and mothers. Growth parameters and birth outcomes were obtained from medical questionnaires after birth and from pediatric questionnaires during the following 24 months of the child's life. RESULTS: Concentrations of B[a]P were significantly higher in Karviná (p < 0.001). OH-PAH metabolites were significantly higher in the mothers' as well as in the newborns' urine in Karviná and during the winter season. Neonatal length was shorter in newborns in Karviná (p < 0.001), but this difference evened out during the next 3 to 24 months. Compared to Ceské Budejovice, newborns in Karviná showed significantly lower weight gain between birth and three months after delivery. The OH-PAH metabolites in mothers' or newborns' urine did not affect birth weight. The presence of seven OH-PAH (top 25% of values of concentrations higher than the median) metabolites in the newborns' urine is associated with decreased length of newborn. Nine OH-PAH metabolites decreased placenta weight, which was the most significant, while seven OH-PAH metabolites decreased Apgar 5'. CONCLUSION: We have shown a possible connection between higher concentration of OH-PAH metabolites in newborns' urine and decreased length, head circumference, placenta weight, and Apgar 5', but not birth weight.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Recién Nacido , Embarazo , Niño , Peso al Nacer , Efectos Tardíos de la Exposición Prenatal/epidemiología , Placenta , Madres
19.
Anticancer Res ; 44(4): 1365-1368, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537965

RESUMEN

This article explores the intricate relationship between airborne particulate matter (PM), specifically PM2.5, and its profound impact on human health, emphasising the heightened risks of cancer. Examining the composition and characteristics of PM2.5, such as particle size and surface area, reveals its ability to induce inflammatory injury and oxidative damage. The carcinogenic potential extends beyond respiratory implications, affecting various organs, including the digestive tract, breast, and prostate. In addition to the genotoxic effects of PM2.5, attached polycyclic aromatic hydrocarbons are recognized to be endocrine-disrupting chemicals with specific implications for breast and prostate cancer. Long-term exposure to PM2.5 is associated with increased cancer mortality, with specific risks identified for different cancer types. The linear correlation between cancer risk and PM2.5 concentration calls for a re-evaluation of permissible emission levels. The article concludes by proposing specific mitigating strategies for individuals exposed to elevated PM2.5. It suggests antioxidant-rich diets and supplements, and exploring inhalation-based antioxidant administration as potential protective measures.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Masculino , Humanos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Antioxidantes , Material Particulado/análisis , Material Particulado/toxicidad , Tamaño de la Partícula , Neoplasias/etiología , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente
20.
Arch Toxicol ; 98(5): 1515-1532, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38427118

RESUMEN

The combustion of traditional fuels in low-income countries, including those in sub-Saharan Africa, leads to extensive indoor particle exposure. Yet, the related health consequences in this context are understudied. This study aimed to evaluate the in vitro toxicity of combustion-derived particles relevant for Sub-Saharan household environments. Particles (< 2.5 µm) were collected using a high-volume sampler during combustion of traditional Ethiopian biomass fuels: cow dung, eucalyptus wood and eucalyptus charcoal. Diesel exhaust particles (DEP, NIST 2975) served as reference particles. The highest levels of particle-bound polycyclic aromatic hydrocarbons (PAHs) were found in wood (3219 ng/mg), followed by dung (618 ng/mg), charcoal (136 ng/mg) and DEP (118 ng/mg) (GC-MS). BEAS-2B bronchial epithelial cells and THP-1 derived macrophages were exposed to particle suspensions (1-150 µg/mL) for 24 h. All particles induced concentration-dependent genotoxicity (comet assay) but no pro-inflammatory cytokine release in epithelial cells, whereas dung and wood particles also induced concentration-dependent cytotoxicity (Alamar Blue). Only wood particles induced concentration-dependent cytotoxicity and genotoxicity in macrophage-like cells, while dung particles were unique at increasing secretion of pro-inflammatory cytokines (IL-6, IL-8, TNF-α). In summary, particles derived from combustion of less energy dense fuels like dung and wood had a higher PAH content and were more cytotoxic in epithelial cells. In addition, the least energy dense and cheapest fuel, dung, also induced pro-inflammatory effects in macrophage-like cells. These findings highlight the influence of fuel type on the toxic profile of the emitted particles and warrant further research to understand and mitigate health effects of indoor air pollution.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Animales , Femenino , Bovinos , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Tamaño de la Partícula , Carbón Orgánico , Biomasa , Macrófagos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...